Generalized Dantzig Selector: Application to the k-support norm
نویسندگان
چکیده
We propose a Generalized Dantzig Selector (GDS) for linear models, in which any norm encoding the parameter structure can be leveraged for estimation. We investigate both computational and statistical aspects of the GDS. Based on conjugate proximal operator, a flexible inexact ADMM framework is designed for solving GDS. Thereafter, non-asymptotic high-probability bounds are established on the estimation error, which rely on Gaussian widths of the unit norm ball and the error set. Further, we consider a non-trivial example of the GDS using k-support norm. We derive an efficient method to compute the proximal operator for k-support norm since existing methods are inapplicable in this setting. For statistical analysis, we provide upper bounds for the Gaussian widths needed in the GDS analysis, yielding the first statistical recovery guarantee for estimation with the k-support norm. The experimental results confirm our theoretical analysis.
منابع مشابه
Fast Saddle-Point Algorithm for Generalized Dantzig Selector and FDR Control with the Ordered l1-Norm
In this paper we propose a primal-dual proximal extragradient algorithm to solve the generalized Dantzig selector (GDS) estimation problem, based on a new convex-concave saddle-point (SP) reformulation. Our new formulation makes it possible to adopt recent developments in saddle-point optimization, to achieve the optimal O(1/k) rate of convergence. Compared to the optimal non-SP algorithms, our...
متن کاملFast Saddle-Point Algorithm for Generalized Dantzig Selector and FDR Control with Ordered L1-Norm
In this paper we propose a primal-dual proximal extragradient algorithm to solve the generalized Dantzig selector (GDS) estimation problem, based on a new convex-concave saddle-point (SP) reformulation. Our new formulation makes it possible to adopt recent developments in saddle-point optimization, to achieve the optimal O(1/k) rate of convergence. Compared to the optimal non-SP algorithms, our...
متن کاملHigh-dimensional stochastic optimization with the generalized Dantzig estimator
We propose a generalized version of the Dantzig selector. We show that it satisfies sparsity oracle inequalities in prediction and estimation. We consider then the particular case of high-dimensional linear regression model selection with the Huber loss function. In this case we derive the sup-norm convergence rate and the sign concentration property of the Dantzig estimators under a mutual coh...
متن کاملThe Group Dantzig Selector
We introduce a new method — the group Dantzig selector — for high dimensional sparse regression with group structure, which has a convincing theory about why utilizing the group structure can be beneficial. Under a group restricted isometry condition, we obtain a significantly improved nonasymptotic `2-norm bound over the basis pursuit or the Dantzig selector which ignores the group structure. ...
متن کاملSome first order algorithms for `1/nuclear norm minimization
In the last decade, the problems related to l1/nuclear norm minimization attract a lot of attention in Signal Processing, Machine Learning and Optimization communities. In this paper, devoted to `1/nuclear norm minimization as “optimization beasts,” we give a detailed description of two attractive First Order optimization techniques for solving the problems of this type. The first one, aimed pr...
متن کامل